Effect of integrated nutrient management on available phosphorus influencing grain and straw yield of rice (cv. IR-36) in an Alfisol

LUNGMUANA, M. GHOSH AND P. K. PATRA

Department of Agricultural Chemistry and Soil Science
Bidhan Chandra KrishiViswavidyalaya
Mohanpur -741252, Nadia, West Bengal

Received: 02-2-2013, Revised: 25-4-2013, Accepted: 30-4-2013

ABSTRACT

A field experiment was conducted during 2007 kharif season in a farmer’s field in the Red and Laterite zone of West Bengal to evaluate the effect of integrated use of fertilizer with organic amendments viz., rice straw, glyricidia leaves, farm yard manure and vermicompost on transformation of phosphorus in the rice rhizosphere soil in relation to growth and yield of rice (cv. IR-36). Rhizosphere soil and plant samples collected from rice field during tillering, flowering and harvesting stages of rice were analyzed. Chemical fertilizers and vermicompost furnished the highest amount of available phosphorus in the rhizosphere and produced the highest rice grain yield. These parameters were found to be significantly and positively correlated. Simple regression analyses revealed that about 90% ($R^2=0.90^{**}$) of the variability in grain yield could be explained by the variability in available phosphorus. This experiment clearly brought out the beneficial role of organic amendment on the availability of phosphorus to rice crop particularly at the later stage of growth.

Keywords: Alfisol, available P, grain yield

Phosphorus (P) deficiency is a major constraint to agricultural production affecting an area of over 2 billion hectares worldwide (Fairhurst et al., 1999). Plant availability of inorganic P in acid Alfisols in the tropics can be limited by its adsorption onto Fe and Al oxides and by formation of Fe and Al phosphate complexes with humic acids (Gerke, 1992). Phosphorus transformation in soils involves complex microbiological, chemical and biological process. Unlike C and N, phosphorus does not undergo oxidation-reduction reaction in soil but occupies a central position in organic matter decomposition (Zibilske et al., 2002). Plant roots acquire P as inorganic P from the soil solution. Immobilization of inorganic P by microbes and its gradual release via microbial turnover can protect P from physicochemical adsorption reactions if their release is synchronized with the demand of growing plants and or a subsequent generation of microorganisms (Magid et al., 1996). A significant part of P, held in soil microorganisms, also is a readily available P source for plants (Macklon et al., 1997). Microbial decomposition of organic matter produces organic acids which either replace P sorbed on metal hydroxides or bring about dissolution of P locked in metal oxides by forming complexes with iron and aluminium (Hue et al., 1986). To improve the efficiency of P application, to sustain crop productivity, restore soil health and also to meet a part of chemical fertilizer requirement, it is imperative to maximize the recycling of P from crop residues and organic and mineral fertilizers (Hegde and Dwiwedi, 1993). Integrated use of organic manures and phosphatic fertilizers result in not only improved efficiency of the latter (Vats et al., 2001; Sakhen et al., 2011) but also significantly increase the availability of P (Maharajan et al., 1997). In highly weathered tropical soils, P availability may depend more on the turnover of easily decomposable soil organic matter (Nziguheba and Bühnenmann, 2005), than on desorption reduce the introduction part to 2/3 of inorganic P (Tiessen and Shang, 1998). Decline in crop yields due to continuous and indiscriminate use of high analysis chemical fertilizers has been observed throughout the world. While decline in soil fertility and productivity due to nutritional imbalance has been recognized as one of the most important factor limiting crop yields (Nambier and Abrol, 1989), the decline in organic carbon content of the soil could be arrested and the gap between potential and actual yield could be bridged to a large extent (Tolanur and Badanur, 2003), if chemical fertilizers are applied in conjunction with organic manures.

The present investigation was undertaken to study the effect of integrated use of organic and inorganic amendments on the dynamic changes in available phosphorus content of a Typic Haplustalf soil containing inherent low organic carbon and its influence on grain and straw yield of rice.

MATERIALS AND METHODS

A field experiment was conducted during Kharif (Rainy) season (July-October), 2007 in a farmer’s field at Jhargram located at 22°45’ N and 86°98’ E at an elevation of 81 m above mean sea level (MSL) in the sub-humid tropical zone of Eastern India. The soil was typical lateritic soil (Typic Haplustalf) growing rice with good drainage facilities and texturally classified as sandy loam.
There were four replications of each of the following six treatments viz., T1- Control, T2- Straw+NPK, T3- Glyricidia leaves+NPK, T4- Farm Yard Manure (FYM)+NPK, T5- Vermicompost+NPK, T6- Chemical Fertilizer. The plots of control treatment (T1) received no organic matter or chemical fertilizers, the plots of fertilizers (T2- T6) received inorganic fertilizers @ N: P2O5 and K2O in the ratio of 80:40:40 kg ha\(^{-1}\) respectively, through urea, single super phosphate and muriate of potash. Plots from T2 to T5 received organic carbon @ 1000 kg Carbon per hectare through organic amendments viz., rice straw, farm yard manure (FYM), vermicompost and glyricidia leaves. All the organic amendments were locally procured and applied to the field plots. The nutrient content of all the amendments are presented table-1. The N, P2O5 and K2O contents of the applied organic sources were computed and required balance amount of N, P2O5 and K2O were compensated through inorganic fertilizers. In all the field plots except the control (T1) treatment, N, P2O5 and K2O were applied in the ratio of 80:40:40 kg ha\(^{-1}\) through inorganic fertilizers (as in T6) or combination of organic manures and inorganic fertilizers (as in T3, T4 and T5). Rice variety IR – 36 was grown to maturity following standard cultural practices. Soil and plant samples were collected from the plot at the time of maximum tillering (30 DAT), booting or flowering (60 DAT) and harvesting stages (90 DAT) by following standard technique (Katznelson et al., 1948).

Table 1: Nutrient content of organic amendments (on air dry basis)

<table>
<thead>
<tr>
<th>Amendments</th>
<th>Total C (%)</th>
<th>Total N (%)</th>
<th>Total P2O5 (%)</th>
<th>Total K2O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice straw (Stored)</td>
<td>50.46</td>
<td>0.42</td>
<td>0.07</td>
<td>1.48</td>
</tr>
<tr>
<td>FYM</td>
<td>15.37</td>
<td>0.57</td>
<td>0.19</td>
<td>0.48</td>
</tr>
<tr>
<td>Vermicompost</td>
<td>16.59</td>
<td>1.14</td>
<td>1.33</td>
<td>1.40</td>
</tr>
<tr>
<td>Glyricidia leaves</td>
<td>54.52</td>
<td>2.76</td>
<td>0.28</td>
<td>0.46</td>
</tr>
</tbody>
</table>

The collected surface soil samples were air dried, ground, passed through a 2 mm sieve and stored temporarily in polyethylene bags. The experimental soil was a sandy loam having sand - 77.12%, silt- 6.0% and clay- 16.88% (Bouyoucous, 1962) with acid reaction (pH- 4.64) (Jackson, 1973); low CEC (Schollenberger and Simon, 1945) [9.40 cmol (p+) kg\(^{-1}\)]; low organic carbon content (0.49 %) (Walkley and Black, 1934); low total nitrogen (0.026 %) (Jackson, 1973); low available potassium (ammonium acetate extractable) (50.02 mg kg\(^{-1}\)) (Jackson, 1973) and low available P (8.48 mg kg\(^{-1}\)) (Bray and Kurtz, 1945). The phosphorus content of plant samples was determined by tri-acid digestion method (Jackson, 1973). The data generated were analyzed following standard statistical methods meant for randomized complete block design (Gomez and Gomez, 1984). Duncan’s multiple range test (DMRT) at 5% was followed to compare the treatment means. Pearson’s correlation coefficients of rice grain and straw yields with available P content of soil and total P content of rice plants at different growth stages and regression co-efficient of grain yield with available phosphorus content of the rhizosphere during different stages of rice growth were also calculated.

RESULTS AND DISCUSSION

Available phosphorus

The changes in the available phosphorus content of the rhizosphere soil under different amendments during the three rice growth periods are presented in table-2. In all the plots substantial increase in available P from initial value of 8.48 mg kg\(^{-1}\) soil was observed. While the chemical fertilizer treated (T6) plots started showing a decreasing trend after the initial increase (up to tillering stage), in all other treatments (including the control), this increase in available P content of rhizosphere soil continued up to the flowering stage and then started decreasing.

Table 2: Effect of amendments on the available phosphorus content of rhizosphere soil

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Available P (mg kg(^{-1}))</th>
<th>Growth period</th>
<th>Tilling</th>
<th>Flowering</th>
<th>Maturity</th>
<th>Mean</th>
<th>SEM (±)</th>
<th>LSD(0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>9.5(^a)</td>
<td>10.0(^b)</td>
<td>8.7(^b)</td>
<td>9.4(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice straw</td>
<td>14.4(^b)</td>
<td>14.3(^b)</td>
<td>13.1(^b)</td>
<td>13.9(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyricidia</td>
<td>12.1(^a)</td>
<td>14.7(^b)</td>
<td>13.4(^b)</td>
<td>13.4(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FYM</td>
<td>15.4(^a)</td>
<td>16.0(^a)</td>
<td>15.7(^a)</td>
<td>15.7(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicompost</td>
<td>14.8(^b)</td>
<td>15.4(^b)</td>
<td>16.4(^a)</td>
<td>15.5(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical fertilizer</td>
<td>16.6(^a)</td>
<td>15.6(^a)</td>
<td>15.4(^a)</td>
<td>15.9(^a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>13.8(^c)</td>
<td>14.3(^a)</td>
<td>13.8(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *In a column values with similar alphabet are not significantly different through DMRT (P=0.05)

Similar results were observed by many other researchers (Singh et al., 2006; Tirol-Padre et al., 2007). All the experimental plots, whether treated with organic residues (T2, T3) or organic manures (T4, T5) or with chemical fertilizer (T6), maintained higher level of available P as compared to the control (T1) plots. The available P content of the chemical fertilizer amended plots (T6) was the highest. The chemical fertilizer treated plot (T6) showed periodic

J. Crop and Weed, 9(1) 90
decline in their available P contents as the crop grew to maturity. Since these plots did not receive any organic amendment the soluble P from chemical fertilizers, was exposed to P-fixation reactions in soil. Phosphate fixation in sesquioxide rich tropical soil (like lateritic soil) had been a matter of investigation by many researchers and a large volume of available literature confirm this phenomenon (Bohn et al., 1991).

The initial increase in available P content of the rhizosphere soil could be due to applied chemical fertilizers, priming effect of applied inorganic P, mineralization of organic phosphorus in the organic manure as well as native soil organic phosphorus (Subehia et al., 2005; Laxminarayan and Patiram, 2006), increasing labile P of the soil by complexing Ca, Mg and Al and decrease in P adsorption due to application of organic manure and/or inorganic P fertilizer (Subehia et al., 2005; Varalaxshmi et al., 2005). The decrease in the available P in the rhizosphere soil beyond flowering stage was due to transformation of available P into unavailable P pool due to resorption by clay minerals and hydroxide oxide of Fe in the anaerobic zone, precipitation after diffusing into the oxidised zone or microbially degradation of organic phosphorus at the exchange sites causing P resorption from soil solution (Ponnamperuma, 1972; 1985; Patrick et al., 1985) and also plant uptake. The undecomposed organic residues (T₃, T₄) though proved to be better than control (T₁), they were less effective in furnishing available P in the rhizosphere than decomposed organic manures (T₂, T₄). The available P content of chemical fertilizer and decomposed organic manure viz., FYM, vermicompost (T₃, T₄) treated plots were comparable.

Micro-organisms, which play a key role in organic P transformation through excretion of phosphatase and phytase enzymes, mineralization of P from organic sources, synthesis and release of organic P have contributed to this transformation. Organic acids produced as a result of organic matter decomposition might have replaced P sorbed on metal hydroxides, or brought about dissolution of P locked in metal oxides by forming complexes with iron and aluminium also. During all the rice growth stages, available P content of soil showed significant correlation with grain yield (r=0.85** to 0.94**) and straw yield (r=0.83** to 0.92**) (Table 3).

Phosphorus concentration of the rice plant

Phosphorus concentration of the rice plant during different stages of growth viz., tillering, flowering and harvest of rice ranged from 0.192 % to 0.207% (Table 4). Statistical analysis of data and comparison of treatment mean revealed significant influence of amendments on phosphorus content of plants during all the three growth stages. Phosphorus contents were highest during flowering and lowest at harvest. The average P content of plants pooled over three growth stages showed significant influence of amendment treatments. The plant P content was highest in chemical fertilizer treated plots (T₃) obviously due to higher availability of inorganic P content of soil. The plant P content under gliricidia application was comparable to that under chemical fertilizer treatment. All other plots had similar plant P content. Phosphorus content of plant at different stages of growth were significantly correlated with available P (AP) at tillering (r=0.70**), flowering (r=0.52**) and harvesting (r=0.51*) (Table 3). Similarly P concentration of rice leaves during flowering and maturity also were significantly influenced.

Table 3: Correlation co-efficient of rice grain and straw yield with available P content of soil and total P content of rice plants at different growth stages

<table>
<thead>
<tr>
<th></th>
<th>Available P content in soil</th>
<th>Total P content of rice plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tillering</td>
<td>Flowering</td>
</tr>
<tr>
<td>Grain yield</td>
<td>0.85**</td>
<td>0.90**</td>
</tr>
<tr>
<td>Straw yield</td>
<td>0.83**</td>
<td>0.88**</td>
</tr>
</tbody>
</table>

Note:*, ** Significant at 5% and 1% level, respectively

Table 4: Effect of amendments on the total P content of rice plants at different growth stages

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total P (%) content in rice plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tillering</td>
</tr>
<tr>
<td>Control</td>
<td>0.18c</td>
</tr>
<tr>
<td>Rice straw</td>
<td>0.19c</td>
</tr>
<tr>
<td>Gliricidia</td>
<td>0.18c</td>
</tr>
<tr>
<td>FYM</td>
<td>0.20b</td>
</tr>
<tr>
<td>Vermi compost</td>
<td>0.19c</td>
</tr>
<tr>
<td>Chemical fertilizer</td>
<td>0.22a</td>
</tr>
<tr>
<td>Mean</td>
<td>0.19⁶</td>
</tr>
<tr>
<td>SEm (±)</td>
<td>0.004</td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Note: In a column values with similar alphabet are not significantly different through DMRT (P=0.05)

Grain yield and straw yield

Grain yield and straw yield recorded after harvest of rice under different treatments ranged from 2.05 to 4.32 t ha⁻¹ and 2.25 to 4.65 t ha⁻¹ (Table 5). Statistical analysis of data and comparison of treatment means revealed significant influence of amendment application on grain yield and straw yield. While control treatment (T₁) effectuated the
lowest, application of chemical fertilizer alone (T₆)

Table 5: Effect of amendments on the grain and straw yield of rice

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Grain yield (t ha⁻¹)</th>
<th>Straw yield (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.05ᵇ</td>
<td>2.29ᵇ</td>
</tr>
<tr>
<td>Rice straw</td>
<td>3.17ᵇ</td>
<td>3.31ᶜ</td>
</tr>
<tr>
<td>Glicidic</td>
<td>3.68ᵇ</td>
<td>3.98ᵈ</td>
</tr>
<tr>
<td>FYM</td>
<td>3.97ᵇ</td>
<td>4.12ᶜ</td>
</tr>
<tr>
<td>Vermicompost</td>
<td>4.24ᵃ</td>
<td>4.5ᵇ</td>
</tr>
<tr>
<td>Chemical fertilizer</td>
<td>4.32ᵃ</td>
<td>4.65ᵃ</td>
</tr>
<tr>
<td>Mean</td>
<td>3.57</td>
<td>3.8</td>
</tr>
<tr>
<td>SEm (±)</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td>0.20</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Note: In a column values with similar alphabet are not significantly different according to DMRT (P=0.05)

Table 6: Regression of grain yield with available P in the rhizosphere at different growth stages of rice

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unstandardized coefficients</th>
<th>Standardized coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>-0.79</td>
<td>0.40</td>
<td>-1.95</td>
<td>0.07</td>
</tr>
<tr>
<td>AV_P (Tillering)</td>
<td>0.03</td>
<td>0.05</td>
<td>0.10</td>
<td>0.67</td>
</tr>
<tr>
<td>AV_P (Flowering)</td>
<td>0.09</td>
<td>0.06</td>
<td>0.23</td>
<td>1.37</td>
</tr>
<tr>
<td>AV_P (Maturity)</td>
<td>0.19</td>
<td>0.05</td>
<td>0.65</td>
<td>3.70</td>
</tr>
<tr>
<td>R²</td>
<td>0.95</td>
<td>0.90</td>
<td>0.89</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Note: Dependent Variable: Grain yield, Predictors: (Constant), Available P (AV_P) during tillering, flowering and maturity

Application of amendments significantly influenced the available phosphorus and yield of rice in comparison with control. Application of chemical fertilizer or vermicompost effected highest amount of available phosphorus. These two treatments eventually also resulted in highest yield of rice. Among the organic amendments in general, rice straw was the inferior most. Simple regression analysis of grain yield with available phosphorus during the three growth stages revealed that available P during harvest seemed to have significant influence on grain yield. About 90% (R²=0.90**) of the variability in grain yield could be explained by this.

REFERENCES

