

An economic assessment of conservation agriculture in West Bengal

*R. CHAKRABORTY AND S. CHATTERJEE

Department of Agricultural Economics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur-741252, Nadia, West Bengal, India

Received : 01.02.2023 ; Revised : 12.06.2023 ; Accepted : 18.06.2023

DOI: https://doi.org/10.22271/09746315.2023.v19.i2.1724

ABSTRACT

The present study mainly focuses on the importance of promoting Conservation Agriculture (CA) in Nadia district of West Bengal. To judge the highest economic return under various cropping systems, an On-Station experimental trial was performed at Balindi Farm, BCKV in 2019-20 and 2020-21 sessions in order to evaluate the production, yield, and economic profitability of seven cropping systems and data were analysed on System Rice Equivalent Yield (kg/ha), System Gross Return(Rs. /ha), System Net Return (Rs. /ha) and System Return-Cost ratio for two years over three tillage operations and five doses of fertilizer treatments. A three factor (Cropping System, Tillage and Treatments) Randomized Complete Block Design (RCBD) pooled over two years (2019-20 and 2020-21) with three replications has been performed for the entire study. The critical differences of main and interaction effects have been analysed subsequently with Tukey's post hoc test. The result depicts that the second year of trial has achieved better system rice equivalent yield and economic return as well over previous year. Among seven cropping systems, Kharif Rice-Potato-Pumpkin has achieved the highest economic return pooled over years but differs individually as Kharif Rice-Maize-Cowpea exhibits better economic return on first year. Among the three tillage operations, conventional tillage has given highest economic return in both the years. In case of various treatments, 0% Residue + 100% RDF has achieved the highest economic return pooled over years but differs individually as 50% Residue + 100% RDF exhibits better economic return on first year. Pooled analysis over the years exhibits better economic return in Kharif Rice-Maize-Cowpea in conventional tillage with 100% Residue + 50% RDF which differs in the second year, resulting higher economic return in Kharif Rice-Potato-Pumpkin cropping system in conventional tillage with 50% Residue + 75% RDF. So, finally after two years of experimentations, farmers would be recommended to follow Kharif rice-Potato-Pumpkin with reduced tillage and 50% crop residue for betterment of Conservation Agriculture apparently different from the conventional one in Nadia district of West Bengal.

Keywords: Resource Conservation, Tillage, RCBD, Pooled analysis, Tukey's Post hoc

The recent transformation in Indian agriculture shows a change from the situation of 'farming for subsistence' to 'farming for profits' with the help of improved technology, cultivation of remunerative cash crops, application of complex fertilizers, bio-pesticides, assured irrigation facilities as well assound farm mechanization which resulted in ensuring expected supply of food grains for sustaining a quality life. However, with a shorter span of time, a negative impacts of declining resource base in terms of quality and quantity exists. While technical advancements in agriculture, industry, and infrastructure for human comfort are falling short of support systems, the need to worry about agricultural sustainability and the conservation of critical resources for a longer length of time is a wake-up call of the twentieth century (Hedge et al., 2016). The term 'Conservation Agriculture' refers to an integrated crop and soil management system that includes rotational crop variety, permanent soil covering by crops, cover crops, or crop leftovers, and little soil disturbance. (FAO, 2008). It was observed that 25-30% cost taken in land preparation than other operation as

well as other improper traditional agricultural practices caused of soil degradation and impact on environment losses can be rectified by conservation practices. As per the conventional agronomic practices, tillage is one of the most basic activities in the preparation of land for the management of weed and some disease control as well. But according to various long-term studies, tillage is proven to be affecting the soil health negatively by changing the soil physical structure such as PH, organic compounds, available Nitrogen and Carbon, nutrient and micronutrient availabilities, such as Zn and Mn (Congreves *et al.*, 2015; Grahmann *et al.*, 2020) as well as increasing the incidences of soil degradation and wind erosion.

Apart from minimizing the tillage, plant residues are very crucial for soil structure regeneration and maintenance in a specific cropping system (Verma and Bhagat, 1992), however the amount of residue being returned to the soil is insufficient for a number of reasons. To enhance soil organic matter, as many leftovers as feasible should be left behind, and they should be distributed as uniformly and effectively. It is

^{*}Email: riyachakraborty335@gmail.com

How to cite : Chakraborty, R. and Chatterjee, S. 2023. An economic assessment of conservation agriculture in West Bengal. *J. Crop and Weed*, 19(2): 216-222.

not advised to cut the remains, particularly in conditions where disintegration is quick and there is little residue present.

It is evident from the studies that research concerns have evolved drastically over the years, changing the view towards farming as well as sustainable cropping systems to maintain a range of ecological functions suitable for the ecosystem (Van Es and Karlen, 2019).Therefore, this paper reviews the impact of conservation agriculture on soil health in accordance with the various cropping systems that are commonly practiced in West Bengal.

OBJECTIVE

The study mainly focuses on the importance of promoting Conservation Agriculture in Nadia district of West Bengal by performing an On-Station experimental trial at Balindi Farm BCKV. The author has tried to evaluate the production, yield and economic profitability of various cropping system under conservation agriculture with a demonstration of cropping systems over two time periods (2019-20 and 2020-21).

MATERIALS AND METHODS

To identify the best cropping system under Conservation Agriculture in New Alluvial Zone particularly Nadia district of West Bengal, the experimental data were analyzed on System Rice Equivalent Yield (SREY) (kg ha⁻¹), System Gross Return (Rs. ha⁻¹), System Net Return (Rs. ha⁻¹) and System Return-Cost ratio for various cropping systems over tillage and doses of fertilizer treated. A three factor (Cropping System, Tillage and Treatments) Randomized Complete Block Design (RCBD) pooled over two years (2019-20 and 2020-21) with three replications has been performed for the entire study. The critical differences of main and interaction effects have been analysed subsequently with Tukey's post hoc test for the critical grouping of certain effects. Seven numbers of Cropping Systems (CS) were chosen with three types of tillage operations and fivefertilizer treatments has cited below:

A three-factor factorial RCBD, consisted of seven Cropping Systems denoted as CS_1 , CS_2 , CS_3 , CS4, CS_5 , CS_6 and CS_7 , Three Tillage practices as Ti_1 , Ti_2 , and Ti_3 with Five Fertilizer treatments as T_1 , T_2 , T_3 , T_4 and T_5 is taken for the analytical discussion. These are treated as main effects while the three-factor interaction effect is represented as $CS \times Ti \times T$ throughout the analysis.

RESULTS AND DISCUSSION

The analysis of variance (ANOVA) of system rice equivalent yield (SREY) along with system gross return, net return and return-cost ratio for different level of cropping systems, tillage as well as treatments combined over two years under experimental plots of Conservation Agriculture indicated marked responses (Table 2). While, significant changes among cropping systems with various level of tillage and treatments over the years occurred in all the traits for the main and interaction effects barring Year × Treatment interaction for the system rice equivalent yield.

Differential responses of SREY (kg ha⁻¹) with system gross return (Rs. ha⁻¹), system net return (Rs. ha⁻¹) and return-cost ratio over two years have been observed where SREY(kg ha⁻¹) for the year 2020-21 was found to be 4.28% higher than the previous year

(2019-20). Likewise, a healthy 5.41% increase in system gross return (Rs. ha⁻¹) over previous year with a mammoth 16.06% hike in system profit (Rs. ha⁻¹) level have been registered. The return-cost ratio has moved up to 40 paise per rupee of investment (2.23 to 2.63).

While, judging the economic performance of individual cropping systems, all the systems have responded differentially where *kharif* rice-potatopumpkin has registered the highest irrespective of all parameters; followed by *kharif* rice-maize-cow pea. However, rice-lentil cropping system with fallow in summer season has performed poorly in terms of system yield and economic return with *kharif* rice-mustard-black gram has the lowest return-cost ratio (1.06).

Though conventional tillage has secured the highest economic return over years; reduced tillage has registered better return-cost ratio (2.50) over

 Table 1: Experimental design of On-Station Trial on Conservation Agriculture in Balindi Farm, BCKV, Nadia, W.B.

Cropping systems(7)	Tillage practices(3)	Treatments(5)
Kharif Rice- Mustard- Black Gram Kharif Rice- Potato- Pumpkin	Conventional Tillage Reduced Tillage	0% Residue+ 100% RDF 100% Residue+ 50% RDF
Kharif Rice- Maize- Cow Pea Kharif Rice- Wheat- Green Gram Kharif Rice- Lentil- Fallow	Zero I illage	100% Residue+ 75% RDF 50% Residue+ 100% RDF 50% Residue+ 75% RDF
<i>Kharif</i> Rice- Onion- Dhaincha <i>Kharif</i> Rice- Cauliflower- <i>Boro</i> Rice		

J. Crop and Weed, *19*(2)

Table 2: ANOVA	for Mai	n and Inter	action Effe	cts																
Source		SREY	(kgha ^{.1})				S S	ystem Groe	ss Return	(¹ ha ⁻¹)		S	ystem Net R	teturn (¹ h	a ^{.1})		1	Return-Cos	t Ratio	
	DF	SS	MS	F value	Pr>F	DF	SS	MS	F value	Pr>F	DF	SS	WS	F value	Pr>F	DF	SS	MS	F value	Pr>F
Year	-	8.19×10^{7}	8.19×10 ⁷	9.59	0.0021	-	3.70×10^{10}	3.70×10^{10}	250.13	<.0001	-	9.79×10 ¹⁰	9.79×10^{10}	661.84	<.0001	-	2.51×10 ¹	2.51×10^{1}	2556.56	<.0001
Replication	2	1.62×10^{7}	8.14×10^{6}	0.95	0.3864	0	9.66×10^{6}	4.83×10^{6}	0.03	0.9679	0	9.66×10^{6}	4.83×10^{6}	0.03	0.9679	0	0.00	0.00	0.02	0.9817
CS	9	4.58×10^{10}	7.63×10^{9}	893.77	<.0001	9	1.34	2.23	15080.5	<.0001	9	1.18	1.97	13367.8	<.0001	9	6.83×10^{2}	1.13×10^{2}	11589.4	<.0001
Tillage	2	$1.09 \times 10^{\circ}$	5.48×10^{8}	64.24	<.0001	0	4.01×10^{11}	2.00×10^{11}	1356.13	<.0001	0	2.40×10 ¹¹	1.20×10^{11}	811.84	<.0001	0	4.52	2.26	229.87	<.0001
Treatment	4	1.59×10^{8}	3.98×10^{7}	4.67	0.0011	4	2.27×10^{10}	5.68×10^{9}	38.40	<.0001	4	1.06×10^{10}	2.65×10^{9}	17.91	<.0001	4	0.30	0.07	7.76	<.0001
Year×CS	9	1.10×10^{10}	$1.83 \times 10^{\circ}$	214.73	<.0001	9	3.30	5.50×10 ¹¹	3717.82	<.0001	9	3.81	6.36×10^{11}	4299.40	<.0001	9	3.72×10 ²	6.20×10^{1}	6313.70	<.0001
Year×Tillage	7	1.20×10^{8}	6.00×10^{7}	7.03	0.0010	0	6.56×10^{10}	3.28×10^{10}	221.94	<.0001	0	6.18×10^{10}	3.09×10^{10}	208.96	<.0001	0	6.30	3.15	320.84	<.0001
Year×Treatment	4	7.83×10^{7}	1.95×10^{7}	2.29	0.0589	4	1.54×10^{10}	3.85×10^{9}	26.04	<.0001	4	1.80×10^{10}	4.50×10^{9}	30.43	<.0001	4	1.35	0.33	34.34	<.0001
CS×Tillage	12	1.31×10^{9}	1.09×10^{8}	12.84	<.0001	12	3.06×10^{11}	2.55×10^{10}	172.77	<.0001	12	3.12×10 ¹¹	2.60×10^{10}	175.90	<.0001	12	3.47×10 ¹	2.89	294.19	<.0001
CS×Treatment	24	9.57×10^{8}	3.98×10^{7}	4.67	<.0001	24	2.56×10 ¹¹	1.06×10^{10}	72.27	<.0001	24	2.68×10^{11}	1.11×10^{10}	75.47	<.0001	25	2.31×10^{1}	0.96	98.14	<.0001
CS×Tillage×	48	$1.09 \times 10^{\circ}$	2.28×10^{7}	2.67	<.0001	48	2.00×10 ¹¹	4.16×10^{9}	28.16	<.0001	48	2.05×10 ¹¹	$4.27{\times}10^{9}$	28.88	<.0001	48	2.14×10^{1}	0.44	45.55	<.0001
Treatment																				
Tillage×Treatment	×	2.10×10^{8}	2.63×10^{7}	3.08	0.0022	×	3.47×10^{10}	$4.34 \times 10^{\circ}$	29.37	<.0001	×	4.00×10^{10}	$5.00 \times 10^{\circ}$	33.81	<.0001	×	3.41	0.42	43.47	<.0001
Year×CS×	92	2.95×10^{9}	3.21×10^{7}	3.76	<.0001	92	6.26×10 ¹¹	6.81×10^{9}	46.04	<.0001	92	6.59×10 ¹¹	7.17×10 ⁹	48.45	<.0001	92	7.89×10 ¹	0.85	87.30	<.0001
Tillage×Treatment		000	0000	0000																
R-square	c <i>6</i> .0	0.99	66.0	0.99																
Coefficient of	16.00	1 10	30 1	1 00																
Variation Root MSF	2922.78	4.18 12165.64	12165.64	0.09																
Note: CS (Croppin,	g Systen	1), $MSE (M_{\epsilon})$	san Squarea	l Error), S.	REY (Sys	tem R	ice Equivalu	snt Yield)												

conventional after two years of experimentation which is a good sign in the context of resource conservation. Statistically conventional and reduced tillage have shown apparently at par significance level with marked difference in economic profit.

Differential outcomes among T_3 (100%) Residue+75% RDF) and T₄ (50% Residue+100% RDF) treatments has also been visualized with marked variation. However, T₁ (0% Residue+100% RDF) is statistically indifferent with T₅ (50% Residue+75% RDF) in respect of SREY. Regarding economic return; highest gross return (Rs.297064 ha⁻¹) over two years has been achieved under T₁ (0% Residue+100% RDF) followed by T_4 (50% Residue+100% RDF) (Rs. 296540 ha^{-1}) which are statistically at par. Three treatments (T₁: 0% Residue+100% RDF; T₄: 50% Residue+100% RDF and T₅: 50% Residue+75% RDF) have shown higher level of economic profit over cost incurred with no significant change. T₅: 50% Residue+75% RDF has registered the highest return-cost ratio 2.46 irrespective of all treatments with T_4 (50% Residue+100% RDF) and T₁ (0% Residue+100% RDF) (Both have returncost ratio 2.43) are apparently statistically indifferent (Table 3).

Coming to the variation in interaction effect of Cropping System (CS) \times Tillage (Ti) \times Treatment (T) pooled over two years; it was found that CS₂Ti₁T₅ (Kharif rice-Potato-Pumpkin with conventional tillage and 50% Residue+75% RDF) has been registered the highest SREY (38385.0 kg ha⁻¹) which is statistically different from other combinations. CS2Ti2T2(Khaifrice-Potato-Pumpkin with reduced tillage and 100% Residue+50% RDF) and CS₃Ti₁T₃ (Kharifrice-Maize-Cowpea with conventional tillage and 100% Residue+75% RDF) are exhibited better SREY (29321.0 kg ha⁻¹ and 29200.0 kg ha⁻¹) which are statistically indifferent. Regarding economic indicators; $CS_{2}Ti_{1}T_{5}$ (*Kharifrice-Potato-Pumpkin* with conventional tillage and 50% Residue+75% RDF) too has exhibited highest system gross return (1 653289.0 ha⁻¹), system net return (1 510976.0 ha⁻¹) and system return-cost ratio (4.79) over two years of experimentation with statistical identity from other combinations. Also, CS₂Ti₂T₃ (Kharifrice-Potato-Pumpkin with reduced tillage and 100% Residue+75% RDF) and CS₂Ti₁T₄(Kharif rice-Potato-Pumpkin with conventional tillage and 50% Residue+100% RDF) has shown marked significance prominence among all the combinations of experimentation (Table 4).

CONCLUSION

With two years of experimentation of Conservation Agriculture with seven cropping systems, three tillage operations and five recommended residual treatments

J. Crop and Weed, 19(2)

Main effects	SREY $(kg ha^{-1})$	System Gross Return (Rs. ha ⁻¹)	System Net Return (Rs. ha ⁻¹)	Return-
Year	(Kg lia)	Keturn (KS. na)	Keturn (KS. na)	Cost
Y : 2019-20	16842 ^B	283251 ^B	155229 ^B	2.22 ^B
Y.: 2020-21	17563 ^A	298582 ^A	180168 ^A	2.62 ^A
Minimum Significant Difference	457.79	1905.5	1905.5	0.02
CS				
CS: Kharif Rice- Mustard- Black Gram	8203 ^F	139647 ^F	6624 ^G	1.06 ^G
CS ¹ : Kharif Rice- Potato- Pumpkin	29231 ^A	497560 ^A	364568 ^A	3.87 ^A
CS ₂ ² : Kharif Rice- Maize- Cow Pea	25924 ^B	441578 ^B	325627 ^B	3.71 ^B
CS: Kharif Rice- Wheat- Green Gram	11217^{E}	190872 ^E	76873 ^E	2.03 ^D
CS_{ϵ}^{4} : Kharif Rice- Lentil- Fallow	6488 ^G	110455 ^G	18581 ^F	1.32 ^F
CS: Kharif Rice- Onion- Dhaincha	14967 ^D	241072 ^D	117665 ^D	1.94^{E}
CS ₂ : Kharif Rice- Cauliflower- Boro Rice	24388 ^C	415236 ^C	263953 ^C	3.04 ^C
Minimum Significant Difference	1290.9	5373.1	5373.1	0.044
Tillage				
Ti ₁ : Conventional	18229 ^A	310358 ^A	183182 ^A	2.48 ^A
Ti,: Reduced	18039 ^A	307125 ^B	179765 ^B	2.49 ^A
Ti ₃ : Zero	15339 ^в	255268 ^C	140149 ^C	2.31 ^B
Minimum Significant Difference	670.9	2792.5	2792.5	0.02
Treatments				
T ₁ : 0% Residue+ 100% RDF	17450^{BA}	297064 ^A	172158 ^A	2.43 ^{BA}
T ₂ : 100% Residue+ 50% RDF	16482 ^B	280608 ^C	160855 ^C	2.42 ^{BC}
T ₃ : 100% Residue+ 75% RDF	16965 ^B	288831 ^B	165338 ^B	2.39 ^C
T ₄ : 50% Residue+ 100% RDF	17992 ^A	296540 ^A	170606 ^A	2.43 ^{BA}
$\vec{T_{5}}$: 50% Residue+ 75% RDF	17125 ^{ba}	291542 ^B	169537 ^A	2.46 ^A
Minimum Significant Difference	1008.9	4199.2	4199.2	0.03

Table 3: Tukey's grouping for main effects

Note: Data in the interaction analyzed with Least Squares Means and means separated with Tukey's post hoc test, at $p \le .05$. CS (Cropping System), MSE (Mean Squared Error), SREY (System Rice Equivalent Yield)Y1 (First year- 2019-20), Y2 (Second year- 2020-21)

CS1-7 (CS1: Kharif Rice- Mustard- Black Gram, CS2: Kharif Rice- Potato- Pumpkin, CS3: Kharif Rice- Maize- Cow Pea, CS4: Kharif Rice- Wheat- Green Gram, CS5: Kharif Rice- Lentil- Fallow, CS6: Kharif Rice- Onion- Dhaincha, CS7: Kharif Rice- Cauliflower- Boro Rice), Ti1-3 (Ti1: Conventional, Ti2: Reduced,Ti3: Zero), T1-5 (T1: 0% Residue+ 100% RDF, T2: 100% Residue+ 50% RDF, T3: 100% Residue+ 75% RDF, T4: 50% Residue+ 100% RDF, T5: 50% Residue+ 75% RDF)

it was found that conservation agriculture has gained 4.28% more system productivity in the second year (2020-21) as compared to first (2019-20). The gain continues for the economic indicators with a healthy 5.41% and 16.06% increase in system gross and net return (ha⁻¹) over previous year. The return-cost ratio has moved up to 40 paise per rupee of investment (2.23 to 2.63). However; considering main effects under cropping systems, tillage and various residual treatments, *Kharif* rice-Potato-Pumpkin has registered the highest irrespective of all parameters with conventional tillage operations and 0% Residue+100%

RDF. But however; T_4 (50% Residue+100% RDF) has shown significantly better result for SREY as well as economic indicators. Regarding interaction effect, a combination of CS₂Ti₁T₅ (*Kharif* rice-Potato-Pumpkin with conventional tillage and 50% Residue+75% RDF) has registered the highest system rice equivalent yield (SREY) as well as system return. So, farmers would be recommended to follow *Kharif* rice-Potato-Pumpkin with reduced tillage and 50% crop residue for betterment of Conservation Agriculture apparently different from the conventional one in Nadia district of West Bengal.

An Economic Assessment of Conservation Agriculture

Interaction Effects	SRFV (kaha-1)	System Gross	System Net Return	Return-Cost
(CS×Tillage×Treatment)	SKET (Kglia)	Return	$(\mathbf{Rs} \ \mathbf{hs}^{-1})$	Ketui II-Cost
(CDATmageAffeatment)		$(\mathbf{Rs} \ \mathbf{ha}^{-1})$	(K3. ha)	
CS ₁ Ti ₁ T ₁	8700CZXEDYBA	148131PQNJLOKMR	7600 ^{LPONQRM}	1 O6 ^{LIKJMN}
CS ₁ Ti ₁ T ₂	9314CZXEWDYBA	158530GHNJLOKMI	22659LJONKM	1.00 1.21 ^{LIKJH}
CS ₁ Ti ₁ T ₂	7377CZEDBA	124750QSTR	-12583PQR	0.010MN
CSTIT	8174 CZXEDYBA	124757 -	915POOR	1 OOLKOMN
CSITII14 CSITIIT	01/4	159197 150665PONJLOKMI	-015 12292LPONOM	1.00 1.12LIKJMN
CSITIITS CSITIITS	00JU 7704CZEDYBA	121505POSOTR	13363 A	1.12 0.04LOMN
$CS_1 I_1 Z I_1$	7724 CZEDYBA	131303 « « « « « « « « « « « « « « « « « «	-9393 <	0.94 ⁻³³¹²
$CS_1 II_2 I_2$	A 10CZXEDYBA	1 4 2 2 2 2 PONSLOKMR	-5287*****	1.05LKIMN
CS111213	102 42CZXEWDVBVA	145552 ^r CHIEKEL		1.05
$CS_1 I_{12} I_4$	10242 0720 CZXEWDYBVA	1/4316 ^{OHJI KEI}	34812 ^{LSHIR}	1.28 ¹³¹¹
CS111215	9/38 CEREMOIDIN	105/59 ^{001521 Rom}	30850 ^{LSH (MA)}	1.24 ^{IIIII}
$CS_1 I_{13} I_1$	/441 ^{CZEDBA}	126695 ^{1 Q31R}	30/1 ¹ ONORM	1.04 ^{EKSMIN}
$CS_1T_{13}T_2$	7291CZEDBA	124142Q30TK	6436LFONOR	1.07/LIKOMN
CS111313	7375CZEDBA	125577FQ31K	351 FONGK	1.01 ^{LKOMIN}
CS111314	8543CERD	145459 ^{FQIVIEDKMK}	18362LFONKM	1.15 ^{LIKJM}
CS1T13T5	6305 ^{CED}	10/354 ^{vw01}	-15654 ^{QK}	0.880
$CS_2Ti_1T_1$	30909 ^{EBDFC}	526172 ^{ED}	379971D	3.69 ^{JHIG}
$CS_2Ti_1T_2$	26116 ^{ELKJDIFHG}	44467/6 ^{NLKM}	303498 ^{KNLM}	3.18 ^{NPO}
CS ₂ Ti ₁ T ₃	31645 ^{EBDAC}	538695 ^{CD}	396473 ^{CD}	3.87 ^{FHEG}
$CS_2Ti_1T_4$	3364 ^{BAC}	572629 ^в	426548 ^{CB}	4.08 ^{DE}
$CS_2Ti_1T_5$	38385 ^A	653289 ^A	510976 ^A	4.79 ^A
$CS_2Ti_2T_1$	26051 ^{ELKJDIFHG}	443528 ^{NLKM}	305234 ^{KNMJL}	3.28 ^{NPMO}
$CS_2Ti_2T_2$	29321 ^{EBDFHCG}	499123 ^{EGF}	368074 ^{EDF}	3.94 ^{FEG}
CS ₂ Ti ₂ T ₃	34263 ^{BA}	583150 ^B	452424 ^B	4.69 ^{BA}
CS ₂ Ti ₂ T ₄	28201 ^{EBDIFHCG}	480108 ^{JHIGF}	344134 ^{GF}	3.65 ^{JHI}
CS ₂ Ti ₂ T ₅	32811 ^{BDAC}	558476 ^{CB}	425997 ^{CB}	4.44 ^{BC}
$CS_2Ti_3T_1$	25709 ^{ELKJDIFHG}	437549 ^{NLOM}	309568 ^{KNIMJL}	3.50 ^{JLMK}
$CS_2Ti_3T_2$	19447 ^{plktnsormq}	331052 ^s	209466 ^{SR}	2.75 ^Q
$CS_2Ti_3T_3$	25067 ^{ELKJIFHMG}	426634 ^{NO}	307347 ^{KNMJL}	3.72 ^{JHIG}
CS ₂ Ti ₃ T ₄	29985 ^{EDBFCG}	510231 ^{EDF}	388200 ^D	4.46^{BC}
CS ₃ Ti ₃ T ₅	26919 ^{EBJDIFHCG}	458080 ^{ЛLKM}	340615 ^{HIGF}	4.09^{DE}
CS ₃ Ti ₁ T ₁	27832 ^{EBDIFHCG}	474068 ^{JHIGK}	341623 ^{HGF}	3.50 ^{JLMK}
CS ₃ Ti ₁ T ₂	25361 ^{ELKJIFHMG}	432081 ^{NOM}	305077 ^{KNMJL}	3.26 ^{NPMO}
$CS_3Ti_1T_3$	29200 ^{EBDFHCG}	497359 ^{EGF}	367771 ^{EDF}	3.77 ^{FHIG}
CS ₃ Ti ₁ T ₄	26022 ^{ELKJDIFHG}	443228 ^{NLKM}	311537 ^{КНІМЈL}	3.30 ^{NPMO}
CS ₃ Ti ₁ T ₅	27851 ^{EBDIFHCG}	474338 ^{JHIGK}	345489 ^{GF}	3.64 ^{JHIK}
$CS_3Ti_2T_1$	29206 ^{EBDFHCG}	497439 ^{EGF}	382476 ^D	4.28 ^{DC}
CS ₃ Ti ₂ T ₂	28569 ^{EBDIFHCG}	486562 ^{HIGF}	378106 ^{ED}	4.47 ^{BC}
CS ₃ Ti ₂ T ₃	26961 ^{EBJDIFHCG}	459257 ^{ЛLKM}	348440 ^{EGF}	4.01 ^{FE}
CS ₃ Ti ₂ T ₄	27067 ^{EBJDIFHCG}	461085 ^{JHILKM}	346122 ^{GF}	3.85 ^{FHEG}
CS ₃ Ti ₂ T ₅	25550 ^{ELKJDIFHG}	435260 ^{NLOM}	325877 ^{KHIGJL}	3.80 ^{FHIG}
CS ₃ Ti ₃ T ₁	26329 ^{ELKJDIFHCG}	448417 ^{NLKM}	331057 ^{KHIGJ}	3.78 ^{FHIG}
CS ₃ Ti ₃ T ₂	22211 ^{PLKJNIOHM}	378377 ^{QP}	265742 ^{QP}	3.29 ^{NPMO}
CS ₃ Ti ₃ T ₃	22384 ^{LKJNIOHM}	381277 ^{QP}	279768 ^{QNPO}	3.68 ^{JHI}
CS ₃ Ti ₃ T ₄	21698 ^{PLKJNIOMQ}	369631 ^Q	268130 ^{QPO}	3.48 ^{JLMK}
CS ₃ Ti ₃ T ₅	22614 ^{LKJNIOHMG}	385284 ^{QP}	287187QNPMO	3 70 ^{JHIG}
CS4Ti1T1	11614 ^{CZXUEWDYBVA}	197625 ^{BCDAE}	75078 ^{EDCBFG}	1 96 ^{BZAXY}
$CS_4Ti_1T_2$	9595CZXEWDYBA	163315 ^{GHJKLFKMI}	45058 ^{JIHKG}	1.61 ^{FED}
CS4Ti1T2	10114 ^{CZXEWDYBVA}	172148 ^{GHJKLFKEI}	53624 ^{JIHFG}	1.68 ^{FCED}
CS4Ti1T4	10772CZXUEWDYBVA	183327 ^{GHDFE}	60230 ^{EDIHFG}	1 75 ^{BACED}
$CS_4TI_1T_2$	10282CZXEWDYBVA	175014GHJFEI	55903 ^{IHFG}	1.69 ^{CED}
$CS_4TI_1T_5$	12202 12205CZXUTWDYBVA	209204BCDAZ	89740DCBA	2 DXWUVXY
CS_4TI_2TI	10703CZXUEWDYBVA	182146GHDFE	64645EDCHFG	1 84BZACYD
CS411212 CS4TiaTa	10735CZXUEWDYBVA	182140 182703GHDFE	66632EDCFG	1 70BZACED
CS411213 CS4TiaT4	13706ZXUTWSYBVA	102703 234743XYWZ	115280ZYXA	2 2 2 UST
0.0411/14	13170	2JT17J	115200	4.55

Table 4: Interaction Effects Pooled over Two Years (2019-20 and 2020-21)

Table 4 Cont..

Table 4 Cont				
Interaction Effects	SREY (kgha ⁻¹)	System Gross Return	System Net Return	Return-Cost
(CS×Tillage×Treatment)		(Rs. ha ⁻¹)	(Rs. ha ⁻¹)	
CS4Ti2T5	10666 ^{CZXUEWDYBVA}	181532 ^{GHDFEI}	68128 ^{EDCFG}	1.79 ^{BZACED}
$CS_4Ti_3T_1$	11413 ^{CZXUEWDYBVA}	194128 ^{BCDFE}	87836 ^{EDCBA}	2.43 ^{RST}
CS4Ti3T2	14013 ^{ZXUTWSYBVA}	238358 ^{XYWZ}	138042^{VXW}	3.15 ^{NPO}
CS4Ti3T3	9578 ^{CZXEWDYBA}	162987 ^{GHNJLFKMI}	57008 ^{EIHFG}	1.89 ^{BZACY}
CS4Ti3T4	11092 ^{CZXUEWDYBVA}	188724 ^{GCDFE}	81207 ^{EDCBF}	2.17^{WUVXT}
CS4Ti3T5	11587 ^{CZXUEWDYBVA}	197130 ^{BCDAE}	94686 ^{ZCBA}	2.38^{ST}
$CS_5Ti_1T_1$	8148 ^{CZXEDYBA}	138709 ^{PQNSOMR}	53924 ^{JIHFG}	1.87 ^{BZACY}
CS5Ti1T2	7744 ^{CZEDYBA}	131824 ^{PQNSOTR}	50073 ^{ЛНFG}	1.86 ^{BZACYD}
CS5Ti1T3	6871 ^{CEDBA}	116987 ^{VSUTR}	33839 ^{LJIHKM}	1.56 ^{FGE}
$CS_5Ti_1T_4$	9187 ^{CZXEWDYBA}	156355 ^{PHNJLOKMI}	71571 ^{EDCBFG}	2.18^{WUVXT}
CS5Ti1T5	8284 ^{CZXEDYBA}	141008 ^{PQNSLOMR}	58747 ^{EDIHFG}	1.95^{BZAXY}
CS5Ti2T1	6054 ^{CED}	103072 ^{XVWUT}	-8497 ^{POQR}	0.93 ^{OMN}
CS5Ti2T2	6641 ^{CEDB}	113083 ^{VSUT}	5638 ^{LPONQRM}	1.07 ^{LIKJMN}
CS ₅ Ti ₂ T ₃	6111 ^{CED}	104070 ^{XVWUT}	16 ^{PONQR}	1.00^{LKOMN}
CS ₅ Ti ₂ T ₄	6984 ^{CEDBA}	118912 ^{SUTR}	14782 ^{LPONQKM}	1.14^{LIKJM}
CS ₅ Ti ₂ T ₅	6983 ^{CEDBA}	118886 ^{SUTR}	16842 ^{LPONKM}	1.17^{LIKJM}
CS ₅ Ti ₃ T ₁	4596 ^E	78244 ^{XW}	8079 ^{LPONQRM}	1.31 ^{IGH}
CS ₅ Ti ₃ T ₂	4713 ^E	80256 ^{XW}	13596 ^{LPONQM}	1.31 ^{IGH}
CS5Ti3T3	5491 ^{ED}	93469 ^{XVWU}	-5563 ^{POQR}	0.94^{OMN}
CS ₅ Ti ₂ T ₄	5137 ^{ED}	87463 ^{XVW}	-11795 ^{PQR}	0.88 ^{ON}
CS ₅ Ti ₂ T ₅	4375 ^E	74485 ^X	-22542R	0.00
CSeTirTi	14073ZXUTWSYRVA	239541 ^{XYWZ}	122722 ^{YXW}	2.07^{WVXY}
CS _c Ti ₁ T ₂	14681 ZXUTWSYRVQ	249873XYWV	137123 ^{VXW}	2.07 2.24WUVST
CS ₆ Ti ₁ T ₂	13080 ZXUTWSYBVA	237964XYWZ	117307ZYXA	1 07BZAXY
CS ₄ Ti ₁ T ₄	13107CZXUTWSYBVA	223136 ^{BXYAZ}	102161 ^{ZYBA}	1.97 1.85BZACYD
CS ₆ Ti ₁ T ₅	13790ZXUTWSYBVA	223130 234747XYWZ	115802 ^{ZYXA}	1 97BZAXY
CS4TioT1	16388PUTWSORVQ	278899UTV	145083 ^{VXW}	2.04WZVXY
CS _c Ti ₂ T ₂	15382PXUTWSORVQ	261782 ^{UWV}	133208 ^{VYXW}	2.04 2.00WZAXY
CS ₆ Ti ₂ T ₂	17107PUTNSORVQ	201162 201168 ^{UT}	159200 159471VU	2.00 2.10WUVXT
CS ₆ Ti ₂ T ₅	1/188/PXUTWSYRVQ	253358XWV	1100/0ZYXA	1 80BZACY
CS ₆ 11 ₂ 14	13262CZXUTWXYBVA	235358 225756XYAZ	05866ZCBA	1.07 1.74BCED
CS-Ti-T	13202 13920ZXUTWXYBVA	225155XYWZ	121709ZYXW	1.74 2.00WUVXY
CS.T.T.	15320 15390PXUTWSORVO	255155 260151UVW	121790 151192VUW	2.09 2.40ST
CS (Ti-T)	13209 12001CZXUTWSYBVA	200131 221004BYAZ	04597ZCBA	2.40 [*] 1.70BCED
CS 7: T	12991	221094-00-	94387-50CBA	1.72 1.65 FCED
CS (Ti) T-	24848 10001CZXUEWDYBVA	21/984 ⁵⁶¹²²	60760EDIHEG	1.05 ^{1 CLD}
CS 7: T	20452EBDEHCG	183400	241844HGF	1.42° ° ° °
	29452 ^{EBIDIFHCG}	501347 ²⁵¹	341844	2.20NLMK
CS711112	2/153 ²²⁰ FKIDIFHCG	462340 ⁵¹⁰²¹⁰¹	309192 ^{-14 442}	3.38 ⁻¹ 2.10NPO
	26/22 EKIDIEHCG	454953 ³¹¹²¹⁴⁴	29848/ ¹⁴¹⁰²	3.18 ⁻⁰⁰
CS711114	26419 ELKIDIFICG	449762 ³¹ /62	289924 ^{NFMO}	3.04 ^r
CS711115	26706EKIDIMICO	454/31 ³¹ /2KM	299548 ^{NML}	3.31 ^{NMO}
CS711211	27238EBDIFIC	463/51 ^{31112K}	308069KNWJL	3.33 ^{NMO}
$CS_7 I_{12} I_2$	25/43 ^{ELKIDIFIG}	458526 ^{MLOW}	284326QNEMO	3.13 ^{r0}
CS7Ti2T3	258/0 ^{ELKJDIFHG}	440562 ^{INLM}	287886QNPMO	3.38 ^{NLMO}
CS7Ti2T4	28847 ^{EBDIFHCG}	491182 ^{HOF}	335165103	3.59 ^{JLIK}
CS7Ti2T5	23964 KINIFHMG	408067 ^{r0}	2570329	3.15 ^{NPO}
$CS_7Ti_3T_1$	21449 ^{PLKJNIOKMQ}	365165 ^{QK}	218430 ^к	2.68 ^{KQ}
CS7Ti3T2	19236 ^{PLTNSORMQ}	327492 ^s	192099 ^{SRT}	2.72 ^Q
CS7Ti3T3	18052 ^{PUTNSORMQ}	307297 ⁸¹	163233 ^{vur}	2.27^{UVST}
CS7Ti3T4	19176 ^{PLTNSORMQ}	326510 ^s	179273 ^{SUT}	2.46^{RS}
CS7Ti3T5	19795 ^{plkjnsormq}	337054 ^{SR}	194794 ^{sr}	2.66^{RQ}

Note: Data in the interaction analyzed with Least Squares Means and means separated with Tukey's post hoc test, at $p \le .05$

CS (Cropping System), Ti (Tillage), T (Treatment), SREY (System Rice Equivalent Yield, SD (Standard Deviation)

 $C_{S_{1-7}}(C_S_1; Kharif Rice-Mustard-Black Gram, C_{S_2}; Kharif Rice-Potato-Pumpkin, C_{S_3}; Kharif Rice-Cow Pea, C_{S_4}; Kharif Rice-Wheat-Green Gram, C_{S_5}; Kharif Rice-Lentil-Fallow, C_{S_6}; Kharif Rice-Onion-Dhaincha, C_{S_7}; Kharif Rice- Cauliflower- Boro Rice), T_{1,3} (T_1; Conventional, T_{12}: Reduced, T_{13}; Zero), T_{1-5} (T_1; 0% Residue + 100% RDF, T_2; 100% Residue + 50% RDF, T_3; 100% Residue + 75% RDF, T_4; 50% Residue + 105% RDF)$

ACKNOWLEDGMENT

The authors are kind enough to acknowledge the entire Faculty staffs, Department of Agricultural Economics, BCKV, Mohanpur, West Bengal for their support and help in preparing the manuscript.

REFERENCES

- Carr, P.M. 2017. Guest Editorial: Conservation Tillage for Organic Farming. *Agriculture*. **7**: 19. https:// doi.org/10.3390/agriculture7030019
- Congreves, K.A., Hayes, A., Verhallen, E.A. and Eerd, L.L. 2015. Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. *Soil and Tillage Research*. 152. 10.1016/j.still.2015.03.012.
- FAO. 2008. Conservation Agriculture. https:// www.fao.org/conservation-agriculture/en/
- Grahmann, K., Rubio, V. and Pérez Bidegain, M. and Quincke, J. 2022. Soil Use Legacy as Driving Factor for Soil Erosion under Conservation Agriculture. Frontiers in Environmental Science. 10. 10.3389/fenvs.2022.822967.

Van Es, H.M. and Karlen, Douglas. 2019. Reanalysis Validates Soil Health Indicator Sensitivity and Correlation with Long-term Crop Yields. *Soil Sci. Soc. America J.*, 83 (3): 321-332.

https://doi.org/10.2136/sssaj2018.09.0338

- Hegde, D. M. and Babu, S. 2016. Sustainable Agriculture. Indian council of agricultural research. https://krishi.icar.gov.in/jspui/bitstream/ 123456789/2852/1/Sustainable %20 Agriculture% 20-% 20ISA % 20 article %20-%20DM% 20Hegde% 20%26% 20SNS%20 Babu%20July %2030% 202016.pdf
- Sharma, P.K., Ladha, J., Verma, T S., Bhagat, R. and Padre, A. 2003. Changes in nutrient status of soil and crop yields under rice-wheat cropping due to long term addition of organic biomass. *Biol. Fertility* of Soils. 37: 108-114.
- Verma, T. S. and Bhagat, R.M. 1992. Impact of rice straw management practices on yield, nitrogen uptake and soil properties in a rice-wheat rotation in northern India. *Fertiliz. Res.*, **33**: 97-106